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LARGE SCALE SYSTEMS WITH SYMMETRIC

CIRCULANT STRUCTURE 

JIN Chao_yong (金朝永)1 , 　ZHANG Xiang_wei (张湘伟)2

(1 .College of Applied Mathematics , Guangdong University of Technology ,
Guangzhou 510090 , P .R .China ;

2 .College of Electromechanical Engineering , Guangdong University

of Technology , Guangzhou 510090 , P.R.China)

(Contributed by ZHANG Xiang_wei)

Abstract:The decentralized stabilization of continuous and discrete linear large scale

systems with symmetric circulant structure was studied .A few sufficient conditions on
decentralized stabilization of such systems were proposed .For the continuous systems , by

introducing a concept called the magnitude of interconnected structure , a very important

property that the decentralized stabilization of such systems is fully determined by the

structure of each isolated subsystem that is obtained when the magnitude of interconnected

structure of the overall system is given .So the decentralized stabilization of such systems can

be got by only appropriately designing or modifying the structure of each isolated subsystem ,
no matter how complicated the interconnected structure of the overall system is .A algorithm

for obtaining decentralized state feedback to stabilize the overall system is given .The

discrete systems were also discussed .The results show that there is a great dfference on
decentralized stabilization between continuous case and discrete case .
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Introduction

The problem of stabilizing the overall linear large scale system by employing a decentralized

state feedback control for each subsystems has received much attention in the past two decades

because it is very important in theory and application .Generally speaking , in spite of the
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controllable and observable hypothesis , it is not always possible to find the decentralized control

law with the desired stabilizing property.Therefore it is necessary to make some additional

conditions about the interconnection matrix , and many results were given[ 1 ～ 6] .
In this paper , we study a class of linear large scale systems with symmetric circulant

structure , which have been studied in several papers[ 7～ 9] .Such systems are very common in

practice including paper machines , distribution networks , and systems consisting of units

operating in parallel.By using the concept called the magnitude of interconnected structure , we
establish some sufficient conditions to assure the decentralized stabilization of such systems .For
the continuous systems , the results obtained show that the decentralized stabilization of such

systems is fully determined by the structure (A , B)of each isolated subsystem when the

magnitude of interconnected structure of the overall system is given , no matter how complicated

the interconnected structure is .We also discuss the discrete systems , the results show that there is

a great difference on decentralized stabilization between continuous case and discrete case .
This paper is organized as follows .In Section 1 , the model of large scale systems with

symmetric circulant structure is given .Sections 2 and 3 are devoted to discussing the properties of

decentralized stabilization of such systems for continuous case and discrete case , respectively.
Two illustrative examples are given in Section 4.

1　Problem Formulation

First we give the definition of block symmetric circulant matrix.
Definition 1.1 　A matrix H ∈ RNm×Np is called block circulant if H has the following

structure :

H =

H1 H2 … HN

HN H1 … HN-1

… … … …
H2 H3 … H1

, (1)

where Hi ∈ Rm×p(i =1 ,2 ,3 , … , N).Moreover , if Hi =HN-i+2(i =2 ,3 , … , N), then the

matrix H is called block symmetric circulant , which is denoted by scl H1 , H2 , … , HN .

Let mj =(1 , vj , v2j , … , vN-1
j )T , j =1 ,2 , … , N , where vj =exp (2π(j -1) -1)/N ,

(j = 1 , 2 ,3 , … , N), i.e ., vj is the j th root of the equation v
N = 1.Let RN =

1

N
r1 , r2 , … , rN with r1 =m1 = 1 ,1 , … ,1 T , rN

2
+1 =mN

2
+1 if N is an even number ,

rp = 1

2
(mp +mN+2-p), rN+2-p = -1

2
(mp -mN+2-p), p =2 , 3 , … , l , where l =N +1

2

if N is odd and l =N
2

if N is even .

Lemma 1.1[ 8 , 9] 　The matrix RN is a real orthogonal matrix , and satisfies

E-1
k =ET

k , (2)

where Ek = RN  Ik ,  denotes the Kronecker product , and Ik denotes the k ×k identity

matrix , ET
k denotes the transposition of Ek .

Lemma 1.2[ 8 , 9] 　Let H =scl H1 , H2 , … , HN with Hi ∈ Rm×p(i =1 , 2 , … , N), and
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Hd = ET
mHEp .Then Hd =block diag Hd1

, Hd2
, … , HdN is a block diagonal matrix with

Hdi
=HdN+2-i

(i =2 , 3 , … , l).Moreover , Hi and Hdi
satisfy

　　

Hd1

Hd
2


HdN

=( NFN  Im)T

H1

H2


HN

, 　

H1

H2


HN

=
1

N
FN( Im)

Hd1

Hd
2


HdN

, (3)

where FT
N = 1

N
m1 m2 …mN .

Let ΢be a dynamic linear time_invariant system defined by N interconnected subsystems ΢i ,
i =1 ,2 , …N .For the continuous case

΢i :
﹒xi(t)=Axi(t)+Bui(t)+ ∑

N

j=1, j≠i

Dij xj(t),

yi(t)=Cxi(t)　　(i =1 ,2 , … , N),
(4)

and for the discrete case

΢i :
xi(k +1)=Axi(k)+Bui(k)+ ∑

N

j =1, j≠i

Dij xj(k),

yi(k)=Cxi(k)　　(i =1 ,2 , … , N),
(5)

where in both models , A ∈ Rn×n , B ∈ Rn×m , C ∈ Rr×n , Dij ∈ Rn×n(i ≠ j =1 ,2 , … , N)

are constant matrices and xi ∈ Rn , ui ∈ Rm , yi ∈ Rr represent the state , input and output of the
subsystem ΢i , respectively .

Let x =(xT1 , xT2 , … , xTN)T , y =(yT1 , yT2 , … , yTN)T , u =(uT1 , uT
2 , … , uTN)T ,  A =block

diag(A , A , … , A), B =block diag(B , B , … , B), C =block diag(C , C , … , C), and D =
(Dij)∈ RNn×Nn with Dii =0 (i =1 , 2 , … , N).Employ a decentralized state feedback control

for each subsystems

　　 ui(t)=K i xi(t)　　(for the continuous case)(i =1 ,2 , … , N), (6)
　　 ui(k)=K i xi(k)　　(for the discrete case)(i =1 ,2 , … , N), (7)

where Ki ∈ Rm×n is the matrix of decentralized gain , i =1 ,2 , … , N .
From Eqs.(4)～ (7)we can write the closed_loop overall system as

﹒x(t)=( A + BK +D)x(t),
y(t)= Cx(t)

(8)

for the continuous case and

x(k +1)=( A + BK +D)x(k),
y(k)= Cx(k)

(9)

for the discrete case .Where in both Eq.(8)and Eq.(9), K =block diag (K1 , K2 , … , KN).
Definition 1.2 　The system (4)(or the system (5))is called a continuous (or discrete)

linear large scale system with symmetric circulant structure if the interconnection matrix D =
(Dij)is block symmetric circulant , i.e ., D =scl 0 , D2 , … , DN .

The system described in definition 1.2 has two properties :one is that all the isolated

subsystems have the same structure as (A , B , C), the other is that the interconnection matrix D

is block symmetric circulant.
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Definition 1 .3　The continuous system (4) (or discrete system (5)) is called

decentralized stabilization if there exists a decentralized state feedback control (6)(or (7))for

each subsystems ΢i such that the closed_loop overall system (8)(or (9))is asymptotically

stable.
Our general goal is to reveal some fundamental properties of the decentralized stabilization

about continuous and discrete linear large scale systems with symmetric circulant structure .In
following discussion we always assume that the interconnection matrix D =
scl 0 , D 2 , … , DN) ,(A , B)is completely controllable and(A , C)is completely observable , it
follows that for all β >0 , the matrix Ricatti equations

ATP +PA -PBBTP +βIn =0 　　(for the continuous case) (10)

and

　　P =ATPA -ATPB(Im +BTPB)-1BTPA +βIn 　　(for the discrete case) (11)
exist a unique solution P respectively which is symmetric and positive definite (denoted by P>0).
　 　Let P =block diag(P , P , … , P), then from Eqs .(10)and (11)we have

　　 AT P + P A - P B BT P +βINn =0　　(for the continuous case) (12)
and

　　 P = A T P A - AT P B(INm + BT P B)-1 BT P A +βINn 　(for the discrete case). (13)
Furthermore , from Lemma 1.1 and Lemma 1.2 , we can easily get the following results:

　　　　

Ad =
def

E-1
n  AEn = A =block diag(A , A , … , A),

Bd =
def

E-1
n  BEm = B =block diag(B , B , … , B),

Cd =
def

E-1
r  CEn = C =block diag(C , C , … , C),

Dd =
def

E-1
n DEn =block diag(Dd1

, Dd2
, … , DdN

),

Pd =
def

E-1
n  PEn = P =block diag(P , P , … , P),

(14)

where Ddi
=DdN+2-i

(i =2 ,3 , … , l).

Moreover , we denote λmax(P)and λmin(P)as the maximum and minimum eigenvalue of

the symmetric matrix P , respectively.Let ‖ · ‖ denote the 2_norm , i.e ., ‖A ‖ =

(λmax(A
TA))

1
2 .

Definition 1 .4 　 Let ρ(D) = λmax(DTD).We call ρ(D) the magnitude of

interconnected structure for both systems (4)and (5).
Lemma 1.3 　ρ(D)= ‖Dd ‖2 =max

1 ≤i ≤N
‖Ddi

‖2.

Proof

　　　　max
1 ≤i ≤N

‖Ddi
‖2 =max

1 ≤i ≤N
λmax(DT

di
Ddi

)= λmax(DT
d Dd)=

λmax(E-1
n D

TEn E
-1
n DEn)= λmax(E-1

n D
TDEn)=

λmax(D
TD)= ρ(D).

The proof is completed .

2　The Properties of Decentralized Stabilization for the Continuous systems

We first consider the continuous linear system(8).Our main result is stated in the following

theorem .
Theorem 2.1　Let β be a positive scalar , P be the unique symmetric and positive definite
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solution of the continuous Ricatti equation (10).If
β > ‖P‖2 +ρ(D), (15)

then the decentralized gain matrices

ui(t)=-BTPxi(t)　　(i =1 , 2 , … , N) (16)

guarantee the asymptotic stability of the closed_loop overall system (8).
Proof　Substitution of Eq.(16)into Eq.(8)yields the closed_loop overall system

﹒x(t)=( A - B BT P +D)x(t). (17)
We choose v(x)= x T Px as a valid Liapunov function for the system (17).Taking its time

derivative along the solution of Eq.(17)and by using Eqs .(12)and (14), we have
　　﹒v(x)=xT( AT P + P A -2 P B BT P +DT P + PD)x =

xT(-βINn - P B BT P +DT P + PD)x ≤

xT(-βINn +DT P + PD)x =

xTEn(-βINn +E-1
n D

TEnE
-1
n  PEn +E-1

n  PEnE
-1
n DEn)E

-1
n x =

-zT(βINn -DT
dPd -Pd Dd)z =

-zT(βINn +(Pd -Dd)T(Pd -Dd)-P2
d -DT

d Dd)z ≤

-zT(βINn -P2
d -DT

d Dd)z ,
where z =E-1

n x .It is obvious that x ≠0 if and only if z ≠0.Now condition (15)together with

Eq.(14)and Lemma 1.3 implies (βINn -P2
d -DT

d Dd)>0.Hence we have ﹒v(x)<0 for

x ≠0 and ﹒v(x)=0 , which assures the asymptotic stability of the closed_loop overall system

(17)by employing the decentralized gain matrices K i =-B TP , i =1 ,2 , … , N .The proof is
completed .

In order to test the condition (15), we should calculate ρ(D), which may involve a very

difficult numerical calculation.In practice , if we can formerly choose a positive scalar ρ>0 such

that ρ(D)≤ ρ, and take ρinstead of ρ(D)in the condition (15), the result of Theorem 2 .1
also holds .

Corollary 2.1 　Let ρ> 0 be a positive scalar such that ρ(D)≤ ρ, P be the unique

symmetric and positive definite solution of the continuous Ricatti equation (10).If
β > ‖P‖2 +ρ, (18)

then the decentralized gain matrices (16)guarantee the asymptotic stability of the closed_loop
overall system (8).

Remarks　We are now in the position to make several observations concerning the results established

so far.
1)The magnitude ρ(D)or the upper bound ρof ρ(D)can be determined beforehand according to the

interconnected structure of the overall system .The Ricatti equation (10)shows that the relationship between

β and P is fully determined by the structure(A ,B)of each isolated subsystem .Those mean in practice we

can get the property of the decentralized stabilization for the linear systems (4)by only appropriately

designing or modifying (A , B)to satisfy the condition (15)or (18), no matter how complicated the

overall interconnected structure D is .It is impossible to do that for the general interconnected systems .
2)Because in Eq.(16)the decentralized gain matrices Ki(i =1 ,2 , … , N)for all isolated subsystems

are the same , in practice we can first design or modify(A ,B)to satisfy the condition (15)or (18)for a

special isolated system , then copy it to the rest .We must note that from the proof of Theorem 2 .1 we see

that the same structure (A , B)for every isolated subsystems is necessary .
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3)To choose β satisfying the condition (15)or (18)is difficult because in the Ricatti equation (10)
the relationship between the scalar β and the matrix P is nonlinear.Generally speaking , the larger β is , the

easier to satisfy condition (15)or (18)but the higher decentralized gain will be .So under condition (15)

or (18)we should choose the positive scalar β as small as possible in practice.

Based on the foregoing relations , the stabilization of the continuous linear large scale

systems with symmetric circulant structure by means of decentralized state feedback control law

(6)can be performed by the following algorithm :
Step 1　Calculate ρ(D)or estimate an upper bound ρfor the ρ(D);
Step 2　Give β a positive initial value , substitute it into Eq .(10)and solve for P;
Step 3　Verify whether the condition (15)or (18)holds.If yes , then turn to Step 6 , and

otherwise , to Step 4;
Step 4　Enlarge β in the way of Remark 3), and turn to Step 2 ;
Step 5　If the condition (15)or (18)does not hold for sufficiently large β (for example

β ≥M , where M is a bound given formerly), we appropriately modify some parameters of

(A , B)in the way of Remarks 1)and 2), then turn to Step 2 ;
Step 6　Take the decentralized state feedback control law in the following:

ui(t)=-BTPxi(t)　　(i =1 ,2 , … , N).

　　In Theorem 2.1 , the existence of the positive parameter β satisfying the condition (15)or

(18) is essential for obtaining the decentralized gains (16).However , in general , it is not

always possible to find the decentralized gains Ki(i =1 ,2 , …, N)which will stabilize the overall

system (8).
Let us now consider a typical case where all the interconnection matrices Di(i =2 ,3 , … ,

N)can be factored as

Di =BLiC

Li = LN+2-i ∈ Rm×r 　　(i =2 ,3 , … , N) (19)

which is the special case to Theorem 2.1.Let L =scl 0 , L2 , L 3 , … , LN , then we have

Ld =
def

E-1
m LEr =block diag(Ld1

, Ld2
, … , LdN

), (20)

where Ldi
= LdN+2-i

(i =2 ,3 , … , l).

Theorem 2.2 　Under the hypothesis (19), the overall continuous system (8) is

stabilizable by means of a local state feedback control (6), where the decentralized gain matrix

K i is determined by

ATP +PA -PBBTP +βCTC =0 ,

K i =-BTP　　(i =1 , 2 , … , N).
(21)

Here β is a positive scalar satisfies

β >max
1≤i≤N

‖Ldi
‖2 . (22)

　　Proof　Due to Eq .(19)we have D = BL C .Following the similar argument in Theorem

2 .1 , we can choose v(x)=x T Px as a valid Liapunov function for the system (17).Taking its

time derivative along the solution of the system (17)and by using Eq .(22)we obtain

　　﹒v(x)=xT(-β CT C - P B BT P + CTLT BT P + P BL C)x =
xT(-β CT C -(L C - BT P)T(L C - BT P)+ CTLTL C)x .
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Define G = L C - BT P , z(t)=E-1
r y(t), where y(t)= Cx(t), then

　　﹒v(x)=-yT(βINr -LTL)y -xTGTGx =

-yTEr(βINr -E-1
r L

TEmE
-1
m LEr)E-1

r y -xTGTGx =

-zT(βINr -LT
dLd)z -xTGTGx ≤

-zT(βINr -LT
dLd)z . (23)

Now due to Eq .(22), βINr -LT
dLd >0 , so we have ﹒v(x)≤0 , which proves the stability of the

overall continuous system (17).To prove the asymptotic stability , it is sufficient to remember

that the solution of Eq .(17)is x(t)=exp ( A - BG)t x 0 for arbitrary x(0)= x0 ≠0 , it
follows that a x 0 ≠ 0 such that ﹒v(x(t))≡ 0 ,  t ≥ 0 cannot exist because in this case

otherwise , by using Eq.(23), we would have

xTGTGx =0

zT(βINr -LT
dLd)z =0

　　( t ≥0), (24)

which implies that

 Cexp( At)x0 =0　( t ≥0).

However , this contradicts the observability of the pair ( A ,  C).Hence , the proof is completed .

3　The Properties of Decentralized Stabilization for the Discrete Systems

Now we consider the discrete linear system (5)or (9).Our purpose in this section is to

generalize the previous results to the discrete case .Using similar argument as in the continuous

case , we can get the following main results .
Theorem 3.1　Let β be a positive scalar , P be the unique symmetric and positive definite

solution of the discrete Ricatti equation (11).If
　　 βIn -ATPA -DT

di
(2P +PBBTP)Ddi

>0　　(i =1 ,2 , … , N), (25)

then decentralized state feedback

　　 ui(k)=-(Im +BTPB)-1BTPAxi(k)　　(i =1 ,2 , … , N) (26)
guarantee the asymptotic stability of the closed_loop overall system (9).

If all the interconnection matrices Di(i =2 ,3 , … , N)in the discrete system (5)can be

factored as Eq.(19), we have
Theorem 3.2 　Given the hypothesis (19), if there exists a positive scalar β such that the

unique symmetric and positive definite solution P of the discrete Ricatti equation (11)satisfies

　　 βIr -LT
di
(Im +BTPB)Ldi

>0　　(i =1 ,2 , … , N), (27)

then the overall discrete system (5)is stabilizable by means of a local state feedback control

(26).
Now we can summarize the properties of decentralized stabilization for the discrete linear

large scale systems with symmetric circulant structure according to the continuous case .
1)Because the condition (25) is related to the overall interconnected matrix D (not

ρ(D)), generally we can' t get the decentralized stabilization only by designing or modifying the

isolated structure (A , B)even the overall interconnected structure magnitude ρ(D)is given ,
which is very different from the continuous case .

2)The system with symmetric circulant structure described by condition (19)can always be

stabilized by a decentralized state feedback control (6)for the continuous case , but it does not
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hold for the discrete case .
3)Remarks 1)and 2)show that there exists a great difference on the properties of

decentralized stabilization between continuous case and discrete case .Generally speaking , the

latter is more complicated than the former.We must notice it in practice .

4　Example Analysis

Example 1 　Consider a class of continuous linear large scale systems with symmetric

circulant structure

﹒xi(t)=-δxi(t)+Bui(t)+ ∑
N

j =1, j ≠i

Dij xj(t),

yi(t)=Cxi(t)　　(i =1 ,2 , … , N),
(28)

where δ>0 , BBT = In , D =(Dij)is block symmetric circulant.In this case the continuous

Ricatti equation (10)can be simplified as

P2 +2δP -βIn =0. (29)

The unique symmetric and positive definite solution P of Eq.(29)is P =( δ2 +β -δ)In .By
computing directly , we obtain that the condition (15)will hold when β satisfies

β > 1 +ρ(D)
4δ2 ρ(D). (30)

　　For all given δ>0 and block symmetric circulant interconnected matrix D , we can always

choose a sufficient positive scalar β satisfying the condition (30).Hence , the overall continuous
system (28)is always stabilizable by means of a local state feedback control law given by

ui(t)=-( δ2 +β -δ)BT xi(t)　　(i =1 , 2 , … , N),

where positive scalar β satisfies the condition (30).
Example 2　Consider a continuous linear system with symmetric circulant structure , where

the overall system consists of N linearly interconnected 2_dimension subsystems , described by

﹒xi(t)=
0 1

0 0
xi(t)+

0

1
ui(t)+ ∑

N

j=1 , j ≠i

Dij xj(t),

yi(t)=Cxi(t)　　(i =1 , 2 , … , N).
(31)

By computing directly ,  β >0 , the unique symmetric and positive definite solution P of the

Ricatti equation

0 0

1 0
P +P

0 1

0 0
-P

0

1
0 1 P +βI2 =0

is

P =
β2 +2β β β

β β +2 β
.

It' s easy to test that β < ‖P‖2 , so for system (31), the condition (15)in Theorem 2.1
cannot hold for arbitrary positive scalar β >0 .In order to assure the decentralized stabilization of

the system (31), we slightly modify the structure (A , B)into ( A ,  B)for each subsystems ,
where

 A =
0 α
0 0

, 　 B =
0

α
,
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where α>0 is the positive scalar to be determined .Taking β =α, then we have

0 0

α 0
P +P

0 α
0 0

-P
0

α
0 αP +αI2 =0.

The unique symmetric and positive definite solution P of the last Ricatti equation is

P =
3 1

1 3
.

By computing directly , we have ‖P ‖2 = 7.464 1 , hence according to Theorem 2.1 , the

modified system is decentralized stabilization for arbitrary interconnected matrix D if we take β =
α>7.464 1 +ρ(D).

It must be noted that the way of choosing parameters αand β is not unique .For example ,
we can choose them in the following:first let β =γα, then for each given γ, the Ricatti equation

0 0

1 0
P +P

0 1

0 0
-P

0

1
0 1 P +γI2 =0

provides us a unique symmetric and positive definite solution Pγ.Finally we take β > ‖Pγ‖2 +
ρ(D), α= β/ γ.The following table gives the relationship among α, β and γfor ρ(D)=1.

　Table1 　

γ ‖P ‖2 β α

　 　　0.25 　　　　1.991 8 　　　　2.991 8 　　　　11.967 2

0.5 3.673 0 4.673 0 9.346

1 7.464 1 8.464 1 8.464 1

2 17.124 7 18.124 7 9.062 4

4 44.784 2 45.784 2 11.446 1

　　From the above table , we can see that the larger the γ, the larger the β and the ‖P‖ .On
the other hand , the larger the γ, the smaller the α.Hence in practice , we can obtain a group of

suitable values of β , ‖P‖ and αby adjusting γ.

5　Conclusion

We have studied the decentralized stabilization of the continuous and discrete linear large

scale systems with symmetric circulant structure .For the continuous case the results obtained in

the paper provide us a practical way of decentralized stabilization by only appropriately designing

or modifying the structure (A , B)of each isolated subsystems , no matter how complicated the

overall interconnected structure D is .Unfortunately , it does not suit the discrete case .Therefore
it is necessary to develop the theory of decentralized stabilization further for the discrete linear

interconnected systems .
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